Hausdorff Dimension and Gaussian Fields
نویسندگان
چکیده
منابع مشابه
Hitting Probabilities and the Hausdorff Dimension of the Inverse Images of Anisotropic Gaussian Random Fields
Let X = {X(t), t ∈ RN} be a Gaussian random field with values in R defined by X(t) = ( X1(t), . . . , Xd(t) ) , where X1, . . . , Xd are independent copies of a centered Gaussian random field X0. Under certain general conditions on X0, we study the hitting probabilities of X and determine the Hausdorff dimension of the inverse image X−1(F ), where F ⊆ R is a non-random Borel set. The class of G...
متن کاملHistoric set carries full hausdorff dimension
We prove that the historic set for ratio of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional non-uniformly hyperbolic dynamical systems.
متن کاملHausdorff dimension and oracle constructions
Bennett and Gill (1981) proved that P 6= NP relative to a random oracle A, or in other words, that the set O[P=NP] = {A | P = NP} has Lebesgue measure 0. In contrast, we show that O[P=NP] has Hausdorff dimension 1. This follows from a much more general theorem: if there is a relativizable and paddable oracle construction for a complexity-theoretic statement Φ, then the set of oracles relative t...
متن کاملExtremal Manifolds and Hausdorff Dimension
The best possible lower bound for the Hausdorff dimension of the set of v-approximable points on a C extremal manifold is obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1977
ISSN: 0091-1798
DOI: 10.1214/aop/1176995900